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‘E. R. Caianiello’, Università di Salerno, 84081 Baronissi (Salerno), Italy
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Abstract
We consider the phase ordering process of a system quenched into a lamellar
phase in the presence of a shear flow. By studying the continuum model based
on the Brazowskii free energy in a self-consistent approximation, we analyse
the effects of a weak anisotropy in the quartic coupling constant, finding that it
radically changes the evolution of the system.

PACS numbers: 82.40.Ck, 64.75.+g, 05.70.Ln, 47.20.Hw

1. Introduction

The phase separation kinetics following a temperature quench has been longly studied for its
relevance in several fields, and as a paradigm of ageing phenomena. Despite the absence of
a reference theory, for binary systems the features of phase ordering are well understood. At
the heart of this phenomenon is the symmetry of dynamical scaling. Specifically, the system
at two subsequent times t1 and t2 looks statistically similar if lengths are measured in units of
R(t), the typical size of phase-separated regions. This symmetry is mirrored by the property
of homogeneity of the structure factor, which obeys

C(�k, t) = tαf [kR(t)], (1)

with R(t) growing algebraically as t1/z. The exponent α is related to the geometry of the
growing domains of the equilibrium phase. For quenching below the critical temperature
domains are compact and α = d/z, d being the space dimensionality. In the case of complex
fluids quenched into a phase with lamellar order, next to R(t) another relevant length is present,
the width l of the lamellae. Equation (1) then modifies to

C(�k, t) = tαf [(k − kM)R(t)], (2)
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with kM ∝ l−1. On the other hand, the case of phase separation in the presence of an external
drive, as in the case of an applied shear flow, has only been considered quite recently. In the
presence of shear, domains of the growing phases tend to align in the flow direction x breaking
the rotational symmetry. Although this alters considerably the dynamics, a natural question
is whether fundamental properties, such as dynamical scaling, still persist and in which form.
Approximate theories [1] for binary systems suggest a natural generalization of equation (1),
namely

C(�k, t) = Atαf [�k · �R(t)]. (3)

Here �R(t) = {Rx,Ry, Rz} are typical lengths in each spatial direction. One finds Rx(t) ∼ t1/z‖

in the flow direction and Ry(t) = Rz(t) ∼ t1/z⊥ in the transverse directions, with
1/z‖ = 1 + 1/z⊥, as a simple scaling analysis suggests. The property Ry(t) = Rz(t) implies
that rotational symmetry still holds in the plane transverse to the flow.

Ordering properties of lamellar phases in shear flow are much less understood. In
this case it was argued [2, 3] that also the rotational symmetry on the plane perpendicular
to the flow is broken, with lamellae aligning preferentially along a particular direction, in
agreement with equilibrium expectations at high shear rates [3, 4] and simulations [5]. This
issue and the possible generalization of the scaling form (2) have been considered recently
[6] in the framework of the Brazowskii [7] model for an N-component order parameter,
in the large-N limit. The solution, however, shows a quite unexpected behaviour. One
finds that scaling is not obeyed in a three-dimensional system4. Typical lengths behave
as Rx(t) ∼ t5/4

√
ln t, Ry(t) ∼ √

ln t, Rz(t) = l; this indicates the orientation of lamellae
along the perpendicular direction, namely parallel to the plane formed by the flow and the
shear (velocity gradient) direction, as generally found in experiments at high shear rates [9].
The appearance of logarithmic corrections and, in particular, the slow logarithmic growth of
Ry(t) ∼ √

ln t are consequences of the breakdown of dynamical scaling (see section 3.1).
In this paper, we consider a model [10, 11] obtained by adding to the Brazowskii free

energy an extra anisotropic coupling of strength β. This model is studied numerically in
a self-consistent approximation which corresponds to the large-N limit in the case β = 0.
We find that the properties with β = 0, discussed above, are radically changed by taking
β �= 0. Our data indicate that dynamical scaling is reinstated. Lamellae still orientate along
the perpendicular direction but the growth laws are different from the case β = 0. One finds
Rx(t) ∼ t5/4, Ry(t) ∼ t1/2, Rz(t) = l. We also discuss the role of thermal fluctuations and the
stability of the lamellar phase. Generally, topological defects can only be stable for N � d.
Therefore, in the large-N limit an equilibrium lamellar phase only exists at zero temperature.
However, we find that the lamellar phase is stabilized for finite temperatures T < Tc by the
shear flow. Tc is found to depend on the kind of dynamics, namely if the order parameter is
conserved or non-conserved, as already found in binary systems [12].

This paper is organized as follows: in section 2, we introduce the model with the
asymmetric coupling. In section 3, after reviewing the behaviour of the Brazowskii model with
β = 0, we present the results of the numerical solution of the model with β �= 0, considering
both the case with conserved order parameter (COP), which is appropriate for binary mixtures,
and with non-conserved order parameter (NCOP), describing, for instance, Rayleigh–Benard
cells above the convective threshold [13]. Finally, in section 4 we draw the conclusions.

4 It must be recalled that scaling is violated also in ordinary binary mixtures (with or without shear) for systems with
a conserved order parameter in the large-N limit, where a multiscaling symmetry is obeyed [8]. Here, the situation is
different, since the breakdown of scaling is observed also in systems without conservation [6] of the order parameter
and the multiscaling symmetry is not present.
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2. The model

We consider a phenomenological model based on a coarse-grained description of the melt
in terms of a concentration field φ(�r, t) playing the role of an order parameter. For an A–B
diblock copolymer mixture, for instance, φ(�r, t) represents the local monomer A concentration
with respect to the average. In the following, we will consider symmetric compositions with an
equal concentration of the two species. We adopt a Langevin equation for the order parameter

∂φ(�r, t)
∂t

= −�v(�r, t) · �∇φ(�r, t) − �(�r) δH [φ]

δφ(�r, t) + η(�r, t). (4)

Here, �v(�r, t) is the local velocity of the fluid. In this paper, we consider a constant plain shear
flow along the x axis. Then

�v(�r, t) = γyx̂, (5)

where γ is the shear rate and x̂ is the unitary vector pointing along x. The Onsager coefficient
�(�r) is assumed [14] to be a constant �(�r) = � for systems with NCOP while �(�r) = −�∇2

with COP. η(�r, t) is a stochastic term, describing thermal fluctuations. Here, we follow the
general choice of a Gaussian white noise with expectations

〈η(�r, t)〉 = 0 (6)

and

〈η(�r, t)η(�r ′, t ′)〉 = 2T �(�r)δ(�r − �r ′)δ(t − t ′), (7)

where T is the final temperature of the quench. This ensures that, in the absence of flow, the
system attains the correct Gibbs equilibrium state. We consider the (generalized) Brazowskii
Hamiltonian [7, 10, 11]

H [φ] = 1

2

∫
�k
[(r − Kk2 + ck4)φ(�k, t)φ(−�k, t)]

+
1

4!

∫
�k1

∫
�k2

∫
�k3

λ({ki})φ(�k1, t)φ(�k2, t)φ(�k3, t)φ(−�k1 − �k2 − �k3, t), (8)

where φ(�k, t) is the Fourier transform of φ(�r, t) and k = |�k|. In equation (8)
∫

�k is a shorthand
for

∫
k<


d�k/(2π)d ; 
 is a phenomenological cut-off taking into account the presence of a
microscopic length, such as the lattice spacing. When K > 0 a modulate state with wave
vector k = kM �= 0 is stable. Linear analysis shows that kM = √

K/(2c). The structure factor
is defined as the second cumulant of the order parameter field

C(�k, t) = 〈φ(�k, t)φ(−�k, t)〉. (10)

Inserting form (8) into equation (4), and neglecting cumulants of third and higher order [3],
the equation of motion for C(�k, t) reads

∂C(�k, t)

∂t
= γ kx

∂C(�k, t)

∂ky

− 2�kp

[
r − Kk2 + ck4 +

1

2
S(�k, t)

]
C(�k, t) + 2T �kp, (11)

with p = 0, 2 for NCOP and COP, respectively, and

S(�k, t) =
∫

�q
λ(−�k, �k,−�q, �q)C(�q, t). (12)

In order to simplify further the model, following Morse and Milner [15], we approximate
λ(−�k, �k,−�q, �q) as

λ(−�k, �k,−�q, �q) � λ[1 − β(q̂ · k̂)2], (13)
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where q̂, k̂ are unit vectors, and λ and β are positive phenomenological parameters that can
be obtained, in principle, by microscopic calculations or by fitting to experiments. Form
(12) amounts to retaining the fewest terms in a spherical harmonics decomposition of the
quartic coupling constant which provides the basic physics. Anisotropy is reasonable in
self-assembled systems, such as copolymers, where the interaction is non-local due to the
extended nature of the polymer chains. The sign of the anisotropic term is appropriate for
lamellar ordering since it results in a smaller quartic interaction for fluctuations with parallel
wave vector then for perpendicular wave vectors. For β = 0, this approximation is analogous
to the limit N → ∞ considered in [6].

Then we have

S(�k, t) = λ

∫
�q
[1 − β(q̂ · k̂)2]C(�q, t). (14)

Since the angular dependence in equation (12) is weak [10], one must have β � 1.
Equation (10) and the self-consistency relation (13) are a closed set of equations governing
the evolution of the model. From the knowledge of the structure factor several properties of
the melt can be obtained. The linear dimension of equilibrated domains can be defined as

Rx(t) =
[∫

�k k2
xC(�k, t)∫

�k C(�k, t)

]− 1
2

, (15)

and similarly for the other directions. When scaling holds, the typical length is unique, and
any possible different definition gives the same result, up to constants.

The knowledge of the structure factor allows the evaluation of rheological indicators. A
shear stress σxy arises due to the stretching of the domains in the direction of the flow, resulting
in an increase of the viscosity η = γ −1σxy of the fluid. For a plain shear flow, the excess
viscosity is given by [16]

η(t) = −γ −1
∫

�k
kxky(2ck2 − K)C(�k, t). (16)

3. Ordering kinetics of the lamellar phase

3.1. Overview of the behaviour with β = 0

Before discussing the behaviour of the full model it is useful to recall what is known about the
case β = 0 where an explicit analytical solution at T = 0 is possible [6]. Since most of the
behaviour of the model is analogous for NCOP and COP, we present a general discussion in
the following. With β = 0, the structure factor reads

C0(�k, t) = A
t2

ln t
ef (�k,t)+g(�k,t), (17)

where the superscript 0 denotes quantities computed with β = 0. Using cylindrical variables
(kx, k⊥, θ), where ky = k⊥ cos θ and kz = k⊥ sin θ , time enters the function f (�k, t) only
through the variables X = kxt

3/2 and Q = (k⊥ − kM)t1/2, namely f (�k, t) scales with respect
to a parallel length L0

x(t) ∼ t3/2 and a transverse one L0
⊥(t) ∼ t1/2. Were f (�k, t) only

present, C(�k, t) would obey dynamical scaling. However, this is not the case because the
two functions f (�k, t) and g(�k, t) dominate one over the other in different time-dependent
regions of k-space. Since g(�k, t) does not obey the same scaling properties of f (�k, t),
the structure factor cannot be cast in scaling form. The behaviour of the typical lengths
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Figure 1. The structure factor C0(�k, t) of the model with NCOP and β = 0 on the plane kx = 0.

Figure 2. The structure factor C(�k, t) of the model with NCOP and β = 10−2 on the plane kx = 0.
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Figure 3. The structure factor C(�k, t) of the model with β = 10−2 on the plane ky = 0 (upper
figures) and kz = kM (lower figures) for NCOP (left) and COP (right).

computed via equation (14) is found to be R0
x(t) ∼ γ t5/4

√
ln t, R0

y(t) ∼ √
ln t . The

logarithmic corrections reflect the absence of dynamical scaling. In the vorticity direction
R0

z (t) saturates to 1/kM , implying the stability of the perpendicular phase. This behaviour
of the characteristic lengths, different from that of L0

x(t), L
0
⊥(t), indicates that the properties

of the scaling part f (�k, t) alone do not determine the behaviour of the whole C0(�k, t). It
is interesting to observe that, as we will see in the next section, in the case with β > 0 the
growing lengths Rx(t) ∼ t5/4, Ry ∼ √

t are reminiscent, apart from logarithmic corrections,
of the power laws of R0

x(t) and L0
⊥(t), respectively. Regarding rheological properties,

the behaviour of η0(t) clearly reflect the lack of dynamical scaling. In fact, assuming
scaling (3), from equation (15) one finds η(t) ∼ [Rx(t)Ry(t)]−1. Instead, for β = 0
one finds η0(t) ∼ t−2 �= [Rx(t)Ry(t)]−1 ∼ γ t5/4 ln t , indicating the violation of scaling.
Analogously, assuming scaling (3), when the structure factor develops a maximum out of the
origin, as it is usually the case for COP, its position must obey kmax

x (t) ∝ R−1
x , and similarly

in the other directions. Instead, in [6] it is found kmax
x (t) ∼

√
ln t/t3. In the next section, we

will use the behaviour of η(t) and of the maxima of C(�k, t) to infer that scaling is obeyed in
the model with β �= 0.

3.2. Numerical study of the case with β �= 0

In this section, we consider the behaviour of the full model with β �= 0. From the mathematical
point of view, the main difference introduced by this additional term is the dependence of
S(�k, t) on wave vector. This makes the self-consistent closure of the model very complicated.
For this reason, we resort to a numerical solution of the governing equation (10). This allows
us to consider also the case of a finite temperature, which was not considered in [6].
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Figure 4. The characteristic lengths Rx(t) (stars), Ry(t) (circles), Rz(t) (bullets) for NCOP (upper
figure) and COP (lower figure) with β = 10−2. Straight lines are power laws t5/4 and t1/2.

We solve the model in d = 3 by means of a first-order Euler algorithm. The quality of
the numerical solution is very sensitive to the resolution of the grid in k space. This happens
because C(�k, t) grows sharp peaks in a narrow domain Dk(t) which shrinks in time. The
accuracy of the numerical solution, then, tends to deteriorate as time goes on because the
mesh becomes inadequate to resolve C(�k, t) inside Dk(t). In order to improve the quality of
the results, therefore, we have implemented an adapting grid technique. Fixing the number
of points of the mesh, the algorithm concentrates them in the region Dk(t). We do this
by identifying, at each time and in each coordinate direction, the largest wave vector such
that C(�k, t) exceeds a certain small threshold. This wave vector, starting from the initial
value 
 at t = 0, shrinks in time, and the accuracy of the grid improves in the wave vector
sector Dk(t) where C(�k, t) is appreciable. Since C(�k, t) decays very fast for large �k, one
can set C(�k, t) ≡ 0 outside this domain. Despite the advantages of this method, solving
the model is still a heavy numerical task because, at each time, the self-consistent closure
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Figure 5. The excess viscosity η(t) for NCOP (upper figure) and COP (lower figure) with
β = 10−2. Straight lines are the power law t−7/4.

(13) must be enforced in order to evaluate the quantity S(�k, t) to be used in equation (10).
Since this implies a convolution over wave vectors, the computational time grows as the
linear mesh size raised to the power 2d, instead of the power d of the case with β = 0. We
have solved equation (10) on a 733 points mesh. The values of the physical parameters are
γ = 10−2, β = 10−2 r = −1, c = 1,K = 0.5, � = 1. With these parameters one has
kM = 1/2. We present first the results of a quench at T = 0.

T = 0. With β = 0, the equation of motion (11) is symmetric between ky and kz on the plane
kx = 0. Because of this, as shown in figure 1, on the plane kx = 0, C0(�k, t) has the shape of
a volcano, at each time. This symmetry is lifted in the model with β > 0. Consequently, as
shown in figure 2 for NCOP, the edge of the volcano is lowered in the region kz � 0 until, for
γ t � 20, C(�k, t) develops two separate peaks at kz = ±kM, ky = 0. The behaviour for COP
is qualitatively similar. The features of C(�k, t) on the plane kx = 0 are important because
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Figure 6. The locus kmax
x (t) (stars), kmax

y (t) (circles) and kmax
z (t) (bullets) of the maxima of the

structure factor for COP with β = 10−2. Straight lines are power laws t−1/2 and t−5/4.

this is the locus where the maxima of C(�k, t) are asymptotically contained5. The additional
symmetry of the case β = 0, therefore, is perhaps the main origin of the important differences
between the two models that will be discussed below. For completeness, we report in
figure 3 the evolution of C(�k, t) on the planes ky = 0 and kz = kM , which correspond
to the other planes where the maxima of C(�k, t) are found asymptotically. Here, the shape
of C(�k, t) is qualitatively similar to the case β = 0. With NCOP, on the plane ky = 0 one
observes two peaks growing at kx = 0, kz = ±kM , while a single peak is observed on the
plane kz = kM . With COP one has the additional feature of the splitting of each peak into two,
which tend to merge as time goes on. This is a consequence of the k2 term in front of the lhs
of equation (10) whose effect is to damp C(�k, t) around �k = 0.

The behaviour of the characteristic lengths, computed through equation (14), is
qualitatively similar for NCOP and COP, as shown in figure 4. After an initial transient
for γ t < 5, corresponding to the linear regime where the order parameter attains local
equilibrium, Rx(t) and Ry(t) start to increase while Rz(t) saturates to k−1

M from above. For
large γ t , we find power law behaviours compatible with Rx(t) ∼ t5/4 and Ry(t) ∼ t1/2 (best
fits yield the exponents 1.28±0.04 (NCOP) and 1.29±0.04 (COP) for Rx(t), and 0.47±0.04
(NCOP) and 0.46 ± 0.04 (COP) for Ry(t)). The exponent of Rx(t) coincides with the value
found in the model with β = 0, apart from logarithmic corrections. This is also the value
found in simple binary systems with COP undergoing phase separation, in the large-N limit.
On the other hand, for Ry(t) one finds a power law with a different exponent from the case
β = 0. However, it must be noted that the model with β = 0 already contains a length L⊥(t)

growing with the same exponent 1/2, although, as discussed in section 3.1, this length did not
determine the properties of Ry(t). We also recall that the exponent 1/2 regulates the scaling
properties of the Brazowskii model without shear in the large-N limit.

5 This is rigorously true only for NCOP. For COP the maxima are located in k2
x = 5(1/k4

Mγ 2)(ln t/t3); the plane
kx = 0 is approached only asymptotically.
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Figure 7. The characteristic lengths Rx(t) (stars), Ry(t) (circles), Rz(t) (bullets) for a system with
NCOP and β = 10−2 quenched to finite temperatures T = 1 (upper figure) and T = 3 (lower
figure). Straight lines are power laws t1/2 and t5/4.

The behaviour of η(t), computed by means of equation (15), is shown in figure 5.
According to the discussion presented in section 3.1, scaling implies η(t) ∝ Rx(t)Ry(t)

asymptotically. With the power laws found for the characteristic lengths one expects
η(t) ∝ t−7/4. Our results show that η(t) after reaching a maximum at γ t � 2 decays with
a power law whose exponent, fitted from the data, is found to be 1.9 ± 0.2 for NCOP and
1.8 ± 0.2 for COP. These values suggest that dynamical scaling is obeyed.

As explained in section 3.1, another test on the validity of dynamical scaling can be made,
in the case of COP, by considering the maxima of the structure factor, whose coordinates
are plotted in figure 6. These data, particularly kmax

y (t), are noisy. By fitting them to a
power law for long times we find kmax

x (t) ∼ t−αx and kmax
y (t) ∼ t−αy , with αx = 1.3 ± 0.1

and αy = 0.5 ± 0.1. These behaviours are consistent with kmax
x (t) ∼ t−5/4 ∝ Rx(t)

−1 and
kmax
y (t) ∼ t−1/2 ∝ Ry(t)

−1, as expected if scaling holds.
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Figure 8. The characteristic lengths Rx(t) (stars), Ry(t) (circles), Rz(t) (bullets) for a system with
COP and β = 10−2 quenched to finite temperatures T = 0.1 (upper figure) and T = 1 (lower
figure). Straight lines are power laws t1/2 and t5/4.

T > 0. In this section, we discuss the behaviour of the model for a quench to a finite
temperature T > 0. According to general principles [14], localized topological defects are
not stable for N > d in an equilibrium system. Therefore, in the absence of shear, a lamellar
phase can form only at zero temperature in the large-N limit [17]. However, such general
considerations do not hold for driven systems [2].

In order to study the stability of the lamellar phase under shear at finite T, we have
performed a series of simulations at different temperatures. In figures 7 and 8, the behaviour
of the typical lengths is plotted for different temperatures. For NCOP, at T = 1 the behaviour
is very similar to the case T = 0: the typical lengths grow with the same power laws. This
suggests that the lamellar phase orders with the same modalities of the case T = 0. The
same conclusion is obtained by the comparison of C(�k, t) or η(t) in the two cases. On the
other hand, when the temperature is raised up to T = 3 a qualitatively different behaviour is



3894 F Corberi et al

observed. Here, Rx(t)Ry(t) and Rz(t) saturate to a constant value for large times. This implies
that the lamellar structure is not growing, and the system attains a stationary disordered state.
Therefore, one can argue that the critical temperature Tc for the stability of the lamellar phase
is finite. For COP the situation is qualitatively similar, the only quantitative difference being
the value of Tc which is lower than for NCOP. In fact, the typical lengths saturate already
at T = 1. The dependence of Tc on dynamics must not be worrisome, since the system
approaches a stationary state that is not in equilibrium, due to the presence of the flow. An
analogous dependence is found in binary systems [12].

4. Conclusions

In this paper, we have considered the ordering kinetics of a system quenched into a lamellar
phase by studying numerically a model based on the Brazowskii free energy with the addition
of an anisotropic coupling constant of strength β. The model is analysed in a self-consistent
approximation which formally linearizes the theory. For β = 0, this approximation is
equivalent to the large-N limit for an N-component vector order parameter which was studied
analytically in a previous paper [6]. We find that the presence of the anisotropic term radically
changes the behaviour of the model. This basic difference is probably mainly due to the lifting
of the symmetry between ky and kz on the plane kx = 0. Our result suggest that dynamical
scaling, which was violated for β = 0, is recovered. The lamellar phase orders along the
perpendicular orientation, as for β = 0, but the growth laws of the characteristic lengths of
the lamellae are different. We find Rx(t) ∼ t5/4 and Ry(t) ∼ t1/2, while Rz(t) saturates to
the typical width of lamellae. The power growth law of Ry(t), in particular, is very different
from the logarithmic behaviour found for β = 0. The excess viscosity, after reaching a
maximum, decays algebraically as [Rx(t)Ry(t)]−1 ∼ t−7/4. These results apply to systems
with NCOP and COP as well, showing that the presence of the conservation law is almost
irrelevant for the ordering of a lamellar phase; this extends what was already known [17] in
the case without flow to sheared systems. We have also considered the role of temperature
fluctuations. For quenches to finite temperatures the system orders similarly to the case T = 0
up to a characteristic temperature Tc which is found to be different for NCOP and COP. The
dependence of Tc on the dynamics was already shown in the case of binary systems [12]; here
the same phenomenon is found for the ordering kinetics of a lamellar phase.

As far as the ordering properties of the lamellar phase are considered, the presence of a
weak anisotropy in the Brazowskii free energy gives rise to a different and articulated pattern
of behaviours with respect to the isotropic case. This suggests that the same model in different
conditions, as in the microemulsion phase, may behave in a different and novel way. It would
be interesting to study the effects of anisotropy on the properties of these phases.
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